2022-01-06 10:18:00 来源:网络发表评论
高中数学《方程的根与函数的零点》说课稿
尊敬的各位考官,大家好,我是今天的X号考生,今天我说课的题目是《方程的根与函数的零点》。
教学理论认为,学生是学习的主体,教师是学习的组织者和引导者。依据这一教学理念,本节课我将从教材分析、学情分析、教学过程等几个方面来加以说明。
一、说教材
首先说说我对教材的理解。
本节课选自人教A版高中数学必修1第三章第1节。结合学生之前所学基本初等函数的图象及性质,引入本节课的学习,不仅能让学生感受到知识之间的联系,同时也为后面学习“用二分法求方程的近似解”奠定基础。
二、说学情
下面谈谈学生的情况。
之前函数与方程的大量学习为本节课打下了良好的基础,但学生并未考虑过如何判断任意一个方程是否有解。因此在教学过程中,我会注重对学生的启发引导,引导学生从具体到抽象,从特殊到一般,一步步得出结果。
三、说教学目标
根据以上对教材和学情的分析,我设计了如下教学目标:
(一)知识与技能
理解方程的根与函数零点之间的关系,掌握函数零点存在的判定方法,会判断函数零点的个数。
(二)过程与方法
经历观察、思考、分析、猜想、验证的过程,提升抽象和概括能力;体验从特殊到一般的认知过程,发展函数与方程思想。
(三)情感、态度与价值观
感受数学知识前后间的联系,并逐步养成善于探索的思维品质。
四、说教学重难点
结合教学目标的确立,我设置本节课教学重点为:函数零点与方程的根之间的联系,利用函数性质判定零点存在。教学难点为:利用函数性质判定零点存在的探索及应用。
五、说教法和学法
为了实现教学目标,突破教学重难点,本节课我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。
六、说教学过程
下面我将重点谈谈我的教学过程。
(一)引入新课
首先是导入环节。我会带领学生复习到目前为止所学过的函数都有哪些。根据学生的举例我会提问:若将函数改写成方程,是否都可以求解?如若不能,能否判断出该方程是否有解?学生很容易发现,对于复杂方程或未接触过的方程,是没有办法求解的,由此引发认知冲突,进而进入本节课的学习。
通过这样的导入,由已知到未知,学生能够感受到前后知识之间的联系以及知识的螺旋上升,有效激发学生的好奇心,为新课的展开做好铺垫。
(二)讲解新知
本文关键字: 中学教资面试指导
中学教资笔试 | 【直通车】2024上中学教资笔面直通车 | ¥5980 | 查看详情 |
【无忧班】2024上中学教资笔试无忧协议班 | ¥2480 | 查看详情 | |
【联报班】科一+科二+语/数/英/音联报 | ¥293 | 查看详情 | |
【全程班】中学教资带背全程班 | ¥199 | 查看详情 | |
【单项班】中学教资单项班 | ¥79 | 查看详情 | |
【普通话】普通话考试急速提升班 | ¥9.9 | 查看详情 | |
小学教资 | 【直通车】2024上 小学教资笔面直通车 | ¥5980 | 查看优惠 |
【无忧班】2024上小学教资笔试无忧协议班 | ¥2480 | 查看详情 | |
【全程班】小学教资带背全程班 | ¥199 | 查看详情 | |
【单项班】小学教资单项班 | ¥99 | 查看详情 | |
【普通话】普通话考试急速提升班 | ¥9.9 | 查看详情 |